Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Besma Bouzemi, Habib Boughzala and Tahar Jouini*

Département de Chimie, Faculté des Sciences, 1060 Campus Universitaire, Tunis, Tunisia

Correspondence e-mail: tahar.jouini@fst.rnu.tn

Key indicators

Single-crystal X-ray study T = 293 KMean σ (As–O) = 0.002 Å R factor = 0.019 wR factor = 0.039 Data-to-parameter ratio = 12.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Na₃Cr₂(AsO₄)₃: trisodium dichromium(III) triarsenate

Trisodium dichromium(III) triarsenate, Na₃Cr₂(AsO₄)₃, has been synthesized by a solid-state reaction and structurally characterized by single-crystal X-ray diffraction. It has the garnet structure type.

Received 30 September 2002 Accepted 17 October 2002 Online 22 November 2002

Comment

Until now, in the system Na₂O-Cr₂O₃-As₂O₅, only the structures of compounds formed from two components have been studied: NaCrO₂ (Ruedorff & Becker, 1977), CrAsO₄ (Attfield et al., 1987), Na2As4O11 (Driss et al., 1988), NaAsO3 (Liebau, 1956), Na₄As₂O₇ (Leung & Calvo, 1973) and Na₃AsO₄ (Palazzi & Remy, 1971).

To our knowledge, only one ternary compound, viz. Na₃Cr₂(AsO₄)₃ (Schwarz & Schmidt, 1972), has been reported, but its structure has not been determined. On investigating this system, we synthesized this arsenate and report here the synthesis and crystal structure determination.

Experimental

The title compound was prepared as previously described by Schwarz & Schmidt (1972), starting from reagent-grade Na₂CO₃ (Fluka, 99%), (NH₄)₂Cr₂O₇ (Prolabo, 99.5%) and As₂O₃ (Hoping & Williams, 99.5%) mixed in stoichiometric ratios. The sample was heated first at 773 K for 6 h, and then at 1173 K for 60 h, and finally quenched to room temperature.

Crystal data

$Na_3Cr_2(AsO_4)_3$	Cell parameters from 25		
$M_r = 589.73$	reflections		
Cubic, <i>Ia3d</i>	$\theta = 10-14^{\circ}$		
a = 12.188 (2) A	$\mu = 13.50 \text{ mm}^{-1}$		
V = 1810.6 (5) A ³	T = 293 (2) K		
Z = 8	Polyhedron, green		
$D_x = 4.327 \text{ Mg m}^{-3}$	$0.10 \times 0.08 \times 0.06 \text{ mm}$		
Mo $K\alpha$ radiation			
Data collection			
Enarf-Nonius CAD-4	$R_{\rm int} = 0.021$		
diffractometer	$\theta_{\rm max} = 29.9^{\circ}$		
$\omega/2\theta$ scans	$h = 0 \rightarrow 17$		
Absorption correction: ψ scan	$k = 0 \rightarrow 17$		
(North et al., 1968)	$l = 0 \rightarrow 10$		
$T_{\min} = 0.406, \ T_{\max} = 0.508$	2 standard reflections		
735 measured reflections	frequency: 120 min		
216 independent reflections	intensity decay: 1.0%		
194 reflections with $I > 2\sigma(I)$			
Refinement			
Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0156P)^2]$		
$R[F^2 > 2\sigma(F^2)] = 0.019$	+ 7.0122P]		
$wR(F^2) = 0.039$	where $P = (F_0^2 + 2F_c^2)/3$		
S = 1.14	$(\Delta/\sigma)_{\rm max} < 0.001$		
216 reflections	$\Delta \rho_{\rm max} = 0.33 \ {\rm e} \ {\rm \AA}^{-3}$		
18 parameters	$\Delta \rho_{\rm min} = -0.40 \text{ e } \text{\AA}^{-3}$		
-	Extinction correction: SHELXL97		
	Extinction coefficient: 0.00326 (17)		

© 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

Table 1

Selected geometric parameters (Å).

As1-O1 ⁱ	1.6983 (16)	Cr1-O1 ⁱⁱⁱ	1.9942 (15)
As1-O1	1.6984 (16)	Na1-O1 ^{iv}	2.3919 (17)
Cr1-O1 ⁱⁱ	1.9941 (15)	Na1-O1 ^v	2.5337 (17)

Symmetry codes: (i) $\frac{3}{4} - x, z - \frac{1}{4}, \frac{1}{4} - y$; (ii) $z, \frac{1}{2} - x, \frac{1}{2} + y$; (iii) $\frac{1}{2} - x, \frac{1}{2} + y, z$; (iv) $\frac{1}{4} - x, z - \frac{1}{4}, \frac{1}{4} + y$; (v) $\frac{1}{4} + y, x - \frac{1}{4}, \frac{3}{4} - z$.

Data collection: *CAD-4 EXPRESS* (Duisenberg, 1992; Enraf-Nonius, 1994; Macíček & Yordanov, 1992); cell refinement: *CAD-4 EXPRESS*; data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1990); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *DIAMOND* (Brandenburg, 1998); software used to prepare material for publication: *SHELXL*97.

References

- Attfield, J. P., Cheetham, A. K., Johnson, D. C. & Torardi, C. C. (1987). Inorg. Chem. 26, 3379–3383.
- Brandenburg, K. (1998). *DIAMOND*. Version 2.0. Crystal Impact, Bonn, Germany.
- Driss, A., Jouini, T. & Omezzine, M. (1988). Acta Cryst. C44, 788-791.
- Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.
- Enraf–Nonius (1994). CAD-4 EXPRESS. Version 5.1/1.2 Enraf–Nonius, Delft, The Netherlands.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Leung, K. Y. & Calvo, C. (1973). Can. J. Chem. **51**, 2082–2088.

Figure 1

A plot of the asymetric unit. [Symmetry codes: (i) $-x + \frac{3}{4}$, $z - \frac{1}{4}$, $-y + \frac{1}{4}$; (ii) z, $-x + \frac{1}{2}$, $y + \frac{1}{2}$; (iii) $-x + \frac{1}{2}$, $y + \frac{1}{2}$, z; (vi) x, -y, $-z + \frac{1}{2}$; (vii) $-x + \frac{3}{4}$, $-z + \frac{1}{4}$, $y + \frac{1}{4}$; (viii) $y + \frac{1}{2}$, z, $-x + \frac{1}{2}$; (ix) -y - 1, $-z + \frac{1}{2}$, z - 1; (x) $-z + \frac{1}{2}$, x - 1, -y - 1.]

Liebau, F. (1956). Acta Cryst. 9, 811-817.

- Macíček, J. & Yordanov, A. (1992). J. Appl. Cryst. 25, 73-80.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351– 359.
- Palazzi, M. & Remy, F. (1971). Bull. Soc. Fr. 2795, 639-641.
- Ruedorff, W. & Becker, H. (1977). Z. Naturforsch. Teil B, 2, 614-615.
- Schwarz, H. & Schmidt, L. (1972). Z. Anorg. Allg. Chem. 387, 31-42.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.